Jingling Li

	jingling@cs.umd.edu • +1 (484) 620-1749 • https://scholar.google.com/citations?user=9TbXgQ0AAAAJ		
EDUCATION	University of Maryland, College Park, Maryland, USA		
	 Ph.D. in Computer Science Sep 2017 – May 2023 (Expected) Research Interests: Graph Neural Networks, Representation Learning, Reinforcement Learning, Deep Learning Related Courses: Convex Optimization, Spectral Methods and Reinforcement Learning, AI Planning, Advanced Numerical Optimization, Probability Theory, Algorithmic Lower Bounds, Quantum Information Processing Advisors: John Dickerson 		
	Bryn Mawr College, Bryn Mawr, Pennsylvania, USA		
	 B.A., Honours in Computer Science and Mathematics, <i>magna cum laude</i> Sep 2013 – May 2017 Cumulative GPA: 3.92 / 4.00 Computer Science Thesis: "Modified Conversion Algorithm for Quadrilateral Meshes Generation" Mathematics Thesis: "Well-Quasi-Ordering and its Relation to Terminating Rewrite System." 		
WORK EXPERIENCE	 DeepMind, London, UK Jun 2021 – Present Research Scientist Intern (remote), hosted by Petar Veličković 		
	• Investigating how the inductive bias in architectures could help speed up current reinforcement learning algorithms and improve their generalization performance.		
	 Vector Institute, University of Toronto, Ontario, Canada Research Intern (remote), hosted by Jimmy Ba Investigated the role of architectural inductive bias in learning with noisy labels. 		
	• Publication accepted by 35th Conference on Neural Information Processing Systems (NeurIPS).		
	JPMorgan, New York, New York, USAMay 2019 – Aug 2019• Research Intern at JPMorgan AI Research Team		
	 Facebook, Menlo Park, California, USA May 2017 – Aug 2017 Back End Software Engineer Intern, Ads Identity team Designed and built a new framework to optimize the retrieval time of obtaining all targeted audience for queries on existing Ad products. This framework is expected to speed up 90% of the current queries. 		
GRADUATE	University of Maryland , College Park, Maryland, USA		
RESEARCH EXPERIENCE	 Topic: Neural Network's Architecture Impact its Robustness to Noisy Labels Sep 2020 – May 2021 Theoretically and experimentally identified conditions under which noisy label training could induce good representations. Such representations exist even for models that generalize poorly. Proposed a simple and intuitive method to utilize the induced representation, which achieves the state-of-the-art results on several benchmark datasets on image classification tasks. 		
	 Topic: How Neural Networks Extrapolate Out-of-Distribution? Jan 2020 – Nov 2020 Explained what neural networks learn outside the support of training distribution. Identified conditions under which multilayer perceptrons and graph neural networks extrapolate well. Publication accepted by Nineth International Conference on Learning Representations (ICLR) (oral presentation) Collaborators: Keyulu Xu, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka 		
	 Topic: What Can Neural Networks Reason About? Feb 2019 – Dec 2019 Developed a theoretical framework, algorithmic alignment, to characterize which tasks a neural network can learn well by analyzing how its structure aligns with the underlying reasoning procedures. The theoretical analysis revealed that graph neural networks algorithmically align with dynamic programming (DP) and we show DP unifies a broad range of reasoning tasks. Publication accepted by Eighth International Conference on Learning Representations (ICLR) (spotlight presentation) Collaborators: Keyulu Xu, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka 		
	 Topic: Understanding of Generalization in Deep Learning via Tensor Methods Jun 2018 – May 2019 Identified new properties of a neural network that better characterize its generalization ability and derived theoretica analysis based on these new properties using tensor methods. 		
	Page 1 of 2		

- Publication accepted by the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS)
 - Advisors: Furong Huang, Taiji Suzuki (Continuation of the research project at RIKEN AIP)

RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan

Jun 2018 – Jan 2019

- Investigated different approaches for analyzing the generalization properties of well-trained neural networks, and surveyed current tensor decomposition approaches that have theoretical guarantees
- Provided theoretical analysis to better understand generalization in deep neural networks via tensor methods.
- Advisor: Taiji Suzuki

SELECTEDHow does a Neural Network's Architecture Impact its Robustness to Noisy Labels?Jingling Li,PUBLICATIONSKeyulu Xu, Mozhi Zhang, John Dickerson, Jimmy Ba. In Proceedings of Thirty-fifth Conference on
Neural Information Processing Systems (NeurIPS), 2021.

- VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization. Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John P Dickerson, Furong Huang, Tom Goldstein. In Proceedings of Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS), 2021.
- How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka. *In International Conference on Learning Representations (ICLR)*, 2021. (Oral Presentation).
- What Can Neural Networks Reason About? Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka. *In International Conference on Learning Representations (ICLR)*, 2020. (Spotlight Presentation).
- **Understanding Generalization in Deep Learning via Tensor Methods.** Jingling Li, Yanchao Sun, Jiahao Su, Taiji Suzuki, Furong Huang. *In Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics (AISTATS)*, 2020.
- Select and Permute: An Improved Online Framework for Scheduling to Minimize Weighted Completion Time. Samir Khuller*, Jingling Li*, Pascal Sturmfels*, Kevin Sun*, and Prayaag Venkat*. In Theoretical Computer Science 795 (2019): 420-431.

*Alphabetical order

AWARDS & SCHOLARSHIPS	 Dean's Fellowship, University of Maryland Two year merit-based fellowship for selected PhD students 	2017 – 2019
	 Lora Tong Lee Memorial Scholarship, Bryn Mawr College Awarded annually by the Lee Foundation, Singapore to one Chinese student for tuition, room and board 	2013 – 2017 I.
	 CRA-W Grace Hopper Celebration Research Scholar 	2016
ACADEMIC SERVICE	I have served as a reviewer for ICML (2019-2021), NeurIPS (2019-2021), ICLR (2021- (2021), ICCV (2021), IEEE TNNLS (2019), and JMLR (2020).	2022), CVPR
PROGRAMMING	Proficient in Python, $C/C++$, Java, and MATLAB. Familiar with SOL and R.	